

Evaluating Low Impact
Development Practices
for Storm water
Management on an
Industrial Site in
Mississippi

PRESENTED BY:

Joel Haden
Avinash Patwardhan

CH2MHILL

- Support sustainable economic development
- Supply affordable, reliable power

Manage a thriv

Why LID for industrial sites?

◆ 70% reached by TVA

 Tennessee annual Greenfield development

- 80,000 acres - all

- 12,000 acres – indust

Focal point for development

- Conservation design best practices
 - Roads and parking lots
 - Site development
 - Conservation of natural areas
 - Building design, placement and operation
- Analysis tools
- Three compelling regional pilots

Clay/Towns Industrial Park Site

Clay/Towns Industrial Park Conservation Design

Dry swales

Vegetative channels

Infiltration basin

Constructed wetland

Stream buffer

Georgia Town County

Neuhoff Brownfield Project Site

Neuhoff Brownfield Project Conservation Design

Golden Triangle Regional Airport Site

- Pilot activities
 - find optimum mix of best practices
 - implement best practices
 - monitor site

CH2MHILL LID philosophy

Facilitate sustainable economic development

Preserve natural ecosystems

Unifying theme:
promoting economic
development and
preserving the
environment
can be complementary
objectives

Low-impact development (LID) balances development and watershed protection

• What is LID?

- An approach to site design that mitigates the impacts of development on stormwater flows and water quality

Traditional streetscape

LID streetscape

Low-impact development (LID) balances development and environmental protection

- How does LID work?
 - Uses "stormwater micro-management" to help a developed site mimic the site's original hydrology
 - Combines site planning/lot-scale control options to minimize, infiltrate, slow down, retain, detain, and treat stormwater

LID roof design

LID site planning principles

- Control volume at the source
 - Increase interception
 - Increase on-site retention
 - Encourage infiltration
- Simple is safe
 - Use natural soil and vegetation
 - Avoid labor-intensive mechanical devices
 - Distribute maintenance among site users

LID site planning principles

- Hydrologically functional landscaping
 - Increase foliage interception
 - Increase infiltration
 - Increase soil moisture storage capacity
 - Slow down runoff flow
 - Moderate temperature
 - Encourage plant uptake of contaminants

Demonstration

LIFETM Model Application

Golden Triangle Regional Airport

American Eurocopter Site Mississippi

Tennessee Valley Authority

Site location

Site description

- Civil aircraft manufacturing
- 90-acre site, 14 acres already developed
- 45% impervious
- Goal: retrofit 14-acre site to reduce water quantity & quality impacts

Conventional stormwater management system

LIFE™ model setup

Storm water requirements

- Nater Quality Treat 85% of the average annual runoff (e.g., control the first 1.2 inches of rainfall)
- **Channel Protection** Provide 24-hour extended detention of the 1-year, 24-hour storm
- Over Bank Flood Protection Match preand post-development peaks for 25-year, 24hour storm

Scenario description

- Retrofit 1 Soil amendments for the conveyance swale
- ◆ Retrofit 2 Soil amendments for the conveyance swale and check dams every 100 feet
- ◆ Full LID Scenario Retrofit 2 + Green Roofs + Soil Amendments on Site + Permeable Pavers

Percent of Time Rate is Exceeded

Cost-benefit analysis

Amount of Land Taken Up by Swales

= Estimated Construction Cost

= % of Total Rainfall Infiltrated

Application summary

- LIFE model enables you to understand development impacts during the planning stage
 - Less land required for same facilities
 - Water quantity/quality source control on site
- Managers can make informed decisions on cost-benefit trade-offs
- Sound science can make economic development compatible with environmental stewardship

Questions and Answers